Synthesis and Characterization of 2-Iminoperhydro-1,3-
 selenazin-4-ones by Reaction of N, N^{\top}-Disubstituted Selenoureas with Acryloyl Chloride

Mamoru Koketsu [a],* Masayasu Taura [b] and Hideharu Ishihara [b]*

[a] Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
[b] Department of Chemistry, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

Abstract

2-Iminoperhydro-1,3-selenazin-4-ones were synthesized by the reaction of N, N^{\prime}-disubstituted selenoureas with acryloyl chloride.

J. Heterocyclic Chem., 41, 783 (2004).

There are many selenium-containing heterocyclic compounds found in the literature [1]. Of these many are potential pharmaceutical agents [2]. The use of selenoureas as the precursors is one of the most efficient methods for the synthesis of heterocyclic compounds containing selenium [3]. We describe here the synthesis of 2imino perhydro-1,3-selenazin-4-ones by the reaction of selenoureas with acryloyl chloride.
Various reactions were investigated to establish the optimal conditions for the synthesis of 3-isopropyl-2-iso-propyliminoperhydro-1,3-selenazin-4-one (3a). The reaction of N, N-diisopropylselenourea (1a) with acryloyl chloride (2) was carried out in dichloromethane under an argon atmosphere. When reaction was carried out at $0{ }^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and at reflux, the yield of 3a was 48,88 and 63%, respectively. Next, the optimal molar ratio of reagents was investigated at $25^{\circ} \mathrm{C}$. When 1,2 and 3 equiv. of $\mathbf{1 a}$ were used with respect to $\mathbf{2}$, the yield of $\mathbf{3 a}$ was 70,88 and 48%, respectively.

Scheme 1

Using the optimal reaction conditions, four kinds of 2-iminoperhydro-1,3-selenazin-4-ones 3a-d were prepared from the reaction of corresponding N, N^{\prime}-disubstituted selenoureas 1a-d with acryloyl chloride 2 (Scheme 1). The structures of $\mathbf{3 a - d}$ were confirmed by studies of IR, MS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{77} \mathrm{Se}, 2 \mathrm{D}$ NMR spectra and elemental analysis. The crystal and molecular structure of $\mathbf{3 a}$ was determined using X-ray diffraction analysis (Figure 1) [4]. The bond length of C2-N10 in 3a is $1.262(3) \AA$ and is clearly a
double bond [5]. The sum of the three angles around each of the C2 and N3 atoms is $359.9(3)^{\circ}$ and $358.7(3)^{\circ}$, respectively. The torsion angles of Se1-C2-N3-C4, C2-N3-C4-C5, N3-C4-C5-C6, C4-C5-C6-Se1, C2-Se1-C6C5 and C6-Se1-C2-N3 are 39.7(3), -16.9(3), -42.9(3), $69.3(2),-40.2(2)$ and $-8.2(2)^{\circ}$, respectively. The two C-N bond lengths of both N3-C4 (1.382(3) \AA) and C2-N3 (1.426(3) \AA) in $\mathbf{3 a}$ also are shorter than the usual value of $1.47 \AA[5,6]$. These results can be attributed to the delocalization of the two π electrons and lone pair electrons on N3. To the best of our knowledge, there are hardly any reports regarding crystal structures of 1,3 -selenazine thus far [7], while crystal structures of 1,3-selenazoles have been reported [8]. Both methylene protons at the C 5 and C6 of 3a are the same chemical shift ($\delta 3.01$) and singlet peak on the ${ }^{1} \mathrm{H}$ NMR spectrum as it happens, cross peaks between the methylene protons and the carbons at the C5 ($\delta 15.7$) and C 6 (δ 38.1) were clearly observed on the HMQC spectrum. The ${ }^{1} J\left({ }^{77} \mathrm{Se}-{ }^{13} \mathrm{C}\right.$) values (in the case of $\mathbf{3 a}, J=30.0 \mathrm{~Hz})$ at the C 6 carbon and the ${ }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{1} \mathrm{H}\right)$ values (in the case of $\mathbf{3 a}, J=11.7 \mathrm{~Hz}$) at the C6 proton of $\mathbf{3}$ were observed on the proton-decoupled ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra. Though the 3-alkyl-2-alkyliminoperhydro-

Figure 1. ORTEP diagram (50% thermal ellipsoids) of compound 3a.

1,3-selenazin-6-one is a possible product, the possibility of its formation was ruled out by the observation of the ${ }^{2} J$ $\left({ }^{77} \mathrm{Se}^{-1} \mathrm{H}\right)$ and ${ }^{1} J\left({ }^{77} \mathrm{Se}^{-13} \mathrm{C}\right)$ values at the C 6 carbon of $\mathbf{3}$. Previously, though it was reported that the reaction of selenoureas with α-haloacyl halides led the formation of a 5 -memberd ring 2-amino-1,3-selenazol-4-one [8,9], in the present study, it was confirmed that the reactions using N, N-disubstituted selenoureas and α, β-unsaturated acyl chlorides give the corresponding 6 -membered ring 1,3selenazine $\mathbf{3}$ without the presence of activator.

EXPERIMENTAL

Selenoureas were synthesized according to previously described procedures [10]. The ${ }^{77} \mathrm{Se}$ chemical shifts are expressed in ppm deshielded with respect to near $\mathrm{Me}_{2} \mathrm{Se}$ in $\mathrm{CDCl}_{3} .{ }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{1} \mathrm{H}\right)$ values and ${ }^{1} J\left({ }^{77} \mathrm{Se}-{ }^{13} \mathrm{C}\right)$ values are the ${ }^{77} \mathrm{Se}$ satellites of the ${ }^{1} \mathrm{H}$ NMR spectra and proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra.
General Procedure for Synthesis of 3-Isopropyl-2-isopropylim-inoperhydro-1,3-selenazin-4-one (3a).

Acryloyl chloride (0.5 mmol) was added to stirred solution of N, N^{\prime}-diisopropylselenourea (1.0 mmol) in dry dichloromethane $(25 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ under an argon atmosphere. The reaction mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$. The mixture was extracted with diethyl ether (50 mL) and washed with saturated sodium chloride solution (30 mL). The organic layer was dried over sodium sulfate and evaporated to dryness. The residue was purified by flash chromatography on silica gel with dichloromethane:diethyl ether ($40: 1$) to give 3a ($0.23 \mathrm{~g}, 88 \%$ yield) as white crystals. Mp: $55.0-56.0^{\circ} \mathrm{C}$; IR (KBr): $1605,1672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.19(6 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 1.38(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 3.01$ $\left(4 \mathrm{H}, \mathrm{s},{ }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{1} \mathrm{H}\right)=11.7 \mathrm{~Hz}\right), 3.41-3.50(1 \mathrm{H}, \mathrm{m}), 4.83-4.93$ $(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.7\left({ }^{1} J\left({ }^{77} \mathrm{Se}-{ }^{13} \mathrm{C}\right)=\right.$ 30.0 Hz), 20.3, 23.4, 38.1, 50.1, 55.6, 140.2, 170.8; ${ }^{77} \mathrm{Se}$ NMR (78.2 MHz, CDCl_{3}): $\delta 367.3$; MS (CI): m/z = $263\left[\mathrm{M}^{+}+1\right]$; HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSe}$: 262.0583; found: 262.0591. Xray Crystallographic Data: Single crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. Crystal system Monoclinic; Space group $P 2_{1} / c$; $\mathrm{T}=190(2) \mathrm{K} ; \mathrm{a}=14.4860(14) \AA, \mathrm{b}=10.2630(10) \AA, \mathrm{c}=$ 8.2880(8) $\AA, \beta=105.840(5)^{\circ}, V=1185.4(2) \AA^{3}, Z=4 ; D_{c}=$ $1.464 \mathrm{~g} \mathrm{~cm}^{-3}$; Crystal size $0.40 \times 0.30 \times 0.08 \mathrm{~mm}$; Mo $\mathrm{K} \alpha$ ($0.71073 \AA$) ; Diffractometer KappaCCD; θ range for data collection 2.9 to 27.5°, Limiting indices $-18 \leq h \leq 18,-12 \leq k \leq 13$, $10 \leq l \leq 10$; Reflections collected: 20391, Independent reflections: $2702\left[R_{\mathrm{int}}=0.0357\right]$; Refinement method: Full-matrix leastsquares on F^{2}, Goodness of fit on F^{2} : 1.042 , Final least squares cycle included non-hydrogen atoms with anisotropic thermal parameters and hydrogen atoms at fixed positions with isotropic thermal parameters. Final R indices $[I>2 \sigma(I)] R 1=0.0326, w R 2=$ $0.0784 R$ indices (all data) $R 1=0.0443, w R 2=0.0839$, Largest diff. peak and hole 0.484 and $-0.740 \mathrm{e} . \AA^{-3}$ for all data [4].
3-Cyclohexyl-2-cyclohexyliminoperhydro-1,3-selenazin-4-one (3b).

This compound was obtained as a white solid. Mp: $84.8-86.0$ ${ }^{\circ} \mathrm{C}$; IR (KBr): $1610,1665 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.05-1.80 (20H, m), 2.97-3.04 (4H, m), 3.16-3.21 (1H, m),
$4.40-4.50(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.0,24.2$, 25.7, 26.4, 30.0, 33.2, 38.2, 58.4, 63.3, 140.1, 170.7; ${ }^{77}$ Se NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 376.7$; MS (CI): $m / z=343\left[\mathrm{M}^{+}+1\right]$.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OSe}$: C, $56.30 ; \mathrm{H}, 7.68$; N 8.21 . Found: C, 56.36; H, 7.63; N, 8.09.
3-Phenyl-2-phenyliminoperhydro-1,3-selenazin-4-one (3c).
This compound was obtained as a white solid. Mp: $156.0-$ $158.0^{\circ} \mathrm{C}$; IR (KBr): $1579,1697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 3.07(2 \mathrm{H}, \mathrm{dd}, J=5.8,7.5 \mathrm{~Hz}), 3.33(2 \mathrm{H}, \mathrm{dd}, J=5.7$, $6.9 \mathrm{~Hz}), 6.47-7.47(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $15.3\left({ }^{1} J\left({ }^{77} \mathrm{Se}-{ }^{13} \mathrm{C}\right)=56.2 \mathrm{~Hz}\right), 37.3,120.1,124.5,127.9,128.5$, $129.0,129.2,139.2,149.0,149.1,170.6 ;{ }^{77} \mathrm{Se}$ NMR (95 MHz , CDCl_{3}): $\delta 357.1$; MS (CI): $m / z=331$ [M++1$]$; HMRS calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OSe}$: 330.0271 ; found 330.0290 .
3-(2-Methylphenyl)-2-(2-methylphenyl)iminoperhydro-1,3-sele-nazin-4-one (3d).
This compound was obtained as a red solid. Mp: $40.0-42.0$ ${ }^{\circ} \mathrm{C}$; IR (KBr): $1611,1697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.99(3 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 3.03-3.15(2 \mathrm{H}, \mathrm{m}), 3.28-3.40(2 \mathrm{H}$, $\mathrm{m})$, 6.65-7.37 (8H, m); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.1$, $17.6,18.0,37.2,119.5,124.5,126.3,126.9,128.3,128.5,128.6$, $130.5,130.8,135.5,138.5,147.5,147.6,170.2 ;{ }^{77}$ Se NMR (95 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 357.5$; MS (CI): $m / z=359\left[\mathrm{M}^{+}+1\right]$; HMRS calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSe}$: 358.0583 ; found 358.0562 .

REFERENCES AND NOTES

[1] A. R. Katritzky, C. W. Rees and E. F. V. Scriven, 'Comprehensive Heterocyclic Chemistry II', Vols. 1-11; Pergamon Press, Inc., New York, 1996; T. G. Back, 'Organoselenium Chemistry: A Practical Approach', Oxford University Press, 1999; T. Wirth, 'Organoselenium Chemistry. Modern Developments in Organic Synthesis' Springer, 2000; H. Ishihara, M. Koketsu, Y. Fukuta and F. Nada, J. Am. Chem. Soc., 2001, 123, 8408.
[2] M. Koketsu, H. Ishihara and M. Hatsu, Res. Commun. Mol. Pathol. Pharmacol., 101, 179 (1998); M. Koketsu, H. Ishihara, W. Wu, K. Murakami and I. Saiki, Eur. J. Pharm. Sci., 9, 157 (1999); W. Wu, K. Murakami, M. Koketsu, Y. Yamada and I. Saiki, Anticancer Res., 19, 5375 (1999); S. I. Cho, M. Koketsu, H. Ishihara, M. Matsushita, A. C. Nairn, H. Fukazawa and Y. Uehara, Biochim. Biophys. Acta, 1475, 207 (2000); M. Koketsu, H. O. Yang, Y. M. Kim, M. Ichihashi and H. Ishihara, Org. Lett., 3, 1705 (2001); M. Koketsu, S. Y. Choi, H. Ishihara, B. O. Lim, H. Kim and S. Y. Kim, Chem. Pharm. Bull., 50, 1594 (2002); Y.-J. Park, M. Koketsu, J. M. Kim, J.-H. Yeo, H. Ishihara, K.-G. Lee, S. Y. Kim and C.-K. Kim, Biol. Pharm. Bull., 26, 1657 (2003); K. B. Gutzkow, H. U. Låhne, S. Naderi, K. M. Torgersen, B. Skålhegg, M. Koketsu, Y. Uehara and H. K. Blomhoff, Cell. Signal., 15, 871 (2003).
[3] F. I. Luknitskii, D. O. Taube and B. A. Vovsi, Zhurnal Organicheskoi Khimii, 5, 1844 (1969); M. Takahashi, S. Watanabe and T. Kasai, Heterocycles, 1980, 14, 1921; P. Kristian, D. Koscik and J. Gonda, Collect. Czech. Chem. Commun., 48, 3567 (1983); A. Maslankiewicz, L. Skrzypek and A. Niedbala, Pol. J. Chem., 70, 54 (1996); D. Keil and H. Hartmann, Phosphorus, Sulfur Silicon Relat. Elem., 152, 169 (1999); A. Shafiee, M. A. Ebrahimzadeh and A. Maleki, J. Heterocyclic Chem., 36, 901 (1999); M. Koketsu, N. Suzuki and H. Ishihara, J. Org. Chem., 64, 6473 (1999); Y. Zhou, A. Linden and H. Heimgartner, Helv. Chim. Acta 83, 1576 (2000); O. A. Attanasi, P. Filippone, B. Guidi, F. R. Perrulli and S. Santeusanio, Synlett, 144 (2001).
[4] CCDC 229583 contains the supplementary crystallographic data for 3a. This data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge

Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.
[5] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc. Perkin Trans. 2, S1 (1987).
[6] Tables of Interatomic Distances and Configuration in Molecules and Ions; The Chemical Society, London, 1958 and 1965; G. M. Li, R. A. Zingaro, M. Segi, J. H. Reibenspies, T. Nakajima, Organometallics, 16, 756 (1997); V. Barba, C. Hernández, S. RojasLima, N. Farfán and R. Santillan, Can. J. Chem., 77, 2025 (1999).
[7] M. Koketsu and H. Ishihara, Curr. Org. Chem., 7, 175 (2003).
[8] T. C. Wong, F. S. J. Guziec and C. A. Moustakis, J. Chem.

Soc. Perkin Trans. 2, 1471 (1983); E. Ruiz, X. Tang, Y. J. Li and M. M. Muir, J. Crystallogr. Spectrosc. Res., 23, 791 (1993); Y. Zhou, A. Linden and H. Heimgartner, Helv. Chim. Acta 83, 1576 (2000); M. Koketsu, F. Nada and H. Ishihara, Synthesis, 195 (2002); M. Koketsu, T. Mio and H. Ishihara, Synthesis, 233 (2004).
[9] R. A. Zingaro, F. C. Bennett and G. W. Hammar, J. Org. Chem., 18, 292 (1953); A. M. Comrie, D. Dingwall and J. B. Stenlake, J. Chem. Soc., 5713 (1963).
[10] M. Koketsu, Y. Fukuta and H. Ishihara, Tetrahedron Lett., 42, 6333 (2001); M. Koketsu, N. Takakura and H. Ishihara, Synthetic Commип., 32, 3075 (2002).

